29 resultados para Immunity

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the B7 family costimulate the proliferation of lymphocytes during the initiation and maintenance of antigen-specific humoral and cell-mediated immune responses. While B7-1 and -2 are restricted to lymphoid tissues, and activate naïve T cells, recently identified members including B7-H2 and -H3 are widely expressed on nonlymphoid tissues, and regulate effector lymphocytes in the periphery. B7-H3 has properties that suggested it may display antitumor activity, including the ability to stimulate Th1 and cytotoxic T-cell responses. Here, we test this notion by determining whether intratumoral injection of an expression plasmid encoding a newly described mouse homologue of B7-H3 is able to eradicate EL-4 lymphomas. Intratumoral injection of a mouse B7-H3 pcDNA3 expression plasmid led to complete regression of 50% tumors, or otherwise significantly slowed tumor growth. Mice whose tumors completely regressed resisted a challenge with parental tumor cells, indicating systemic immunity had been generated. B7-H3-mediated antitumor immunity was mediated by CD8(+) T and NK cells, with no apparent contribution from CD4(+) T cells. In summary, the results indicate that B7-H3 interactions may play a role in regulating cell-mediated immune responses against cancer, and that B7-H3 is a potential therapeutic tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies capable of inhibiting the invasion of Plasmodium merozoites into erythrocytes are present in individuals that are clinically immune to the malaria parasite. Those targeting the 19-kD COOH-terminal domain of the major merozoite surface protein (MSP)-119 are a major component of this inhibitory activity. However, it has been difficult to assess the overall relevance of such antibodies to antiparasite immunity. Here we use an allelic replacement approach to generate a rodent malaria parasite (Plasmodium berghei) that expresses a human malaria (Plasmodium falciparum) form of MSP-119. We show that mice made semi-immune to this parasite line generate high levels of merozoite inhibitory antibodies that are specific for P. falciparum MSP-119. Importantly, protection from homologous blood stage challenge in these mice correlated with levels of P. falciparum MSP-119–specific inhibitory antibodies, but not with titres of total MSP-119–specific immunoglobulins. We conclude that merozoite inhibitory antibodies generated in response to infection can play a significant role in suppressing parasitemia in vivo. This study provides a strong impetus for the development of blood stage vaccines designed to generate invasion inhibitory antibodies and offers a new animal model to trial P. falciparum MSP-119 vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms responsible for the immunosuppression associated with sepsis or some chronic blood infections remain poorly understood. Here we show that infection with a malaria parasite (Plasmodium berghei) or simple systemic exposure to bacterial or viral Toll-like receptor ligands inhibited cross-priming. Reduced cross-priming was a consequence of downregulation of cross-presentation by activated dendritic cells due to systemic activation that did not otherwise globally inhibit T cell proliferation. Although activated dendritic cells retained their capacity to present viral antigens via the endogenous major histocompatibility complex class I processing pathway, antiviral responses were greatly impaired in mice exposed to Toll-like receptor ligands. This is consistent with a key function for cross-presentation in antiviral immunity and helps explain the immunosuppressive effects of systemic infection. Moreover, inhibition of cross-presentation was overcome by injection of dendritic cells bearing antigen, which provides a new strategy for generating immunity during immunosuppressive blood infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To examine the effect of Seventh-day Adventist (SDA) membership on ‘immunity’ to the secular effects of changes in BMI.

Design:
Three independent, cross-sectional, screening surveys conducted by Sydney Adventist Hospital in 1976, 1986 and 1988 and a survey conducted among residents of Melbourne in 2006.

Subjects: Two hundred and fifty-two SDA and 464 non-SDA in 1976; 166 SDA and 291 non-SDA in 1986; 120 SDA and 300-non SDA in 1988; and 251 SDA and 294 non-SDA in 2006.

Measurements:
Height and weight measured by hospital staff in 1976, 1986 and 1988; self-reported by respondents in 2006.

Results:
The mean BMI of non-SDA men increased between 1986 and 2006 (P < 0·001) but did not change for SDA men or non-SDA women. Despite small increases in SDA women’s mean BMI (P = 0·030) between 1988 and 2006, this was no different to that of SDA men and non-SDA women in 2006. The diet and eating patterns of SDA men and women were more ‘prudent’ than those of non-SDA men and women, including more fruit, vegetables, grains, nuts and legumes, and less alcohol, meat, sweetened drinks and coffee. Many of these factors were found to be predictors of lower BMI.

Conclusion: The ‘prudent’ dietary and lifestyle prescriptions of SDA men appear to have ‘immunised’ them to the secular effects of changes that occurred among non-SDA men’s BMI. The dietary and lifestyle trends of SDA women did not reflect the increase in their BMI observed in 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells [DCs] are potent antigen presenting cells [APC], which plays a vital role in immune system by detecting and capturing pathogens in the body. DCs perform a pivotal role in induction of T cell response. Regulation of immune response can be achieved by specific antigen [Ag] delivery to DCs. A delivery system that can efficiently target and present Ags to DCs for the purpose of anti-tumour activity is currently a topic of significant research interest. DCs are receiving attention due to their key role in anti cancer host response and due to their adjuvanic property in tumour vaccines. Role of toll like receptors [TLR] in innate immune system and their part in eventual stimulation of adaptive immunity is exploited to develop vaccines. TLR agonists in conjugation with vaccines are shown to increase therapeutic efficacy in some cases. TLRs also play a vital role in protecting the cornea from invading pathogens. Due to adverse effects in the treatment of ocular inflammations, cancer and in viral infections, an alternate approach such as the use of TLRs will solve the inquisitive question regarding side effects. The intended delivery is attained by the use of nanoparticles which in turn leads to prolonged half-life in the body. Co-delivery of Ags, TLRs and immunomodulators using nanoparticles has been demonstrated to elicit potent cellular immune responses and are currently under development of clinically applicable immunisations and vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is now evident that host cells have evolved a remarkable variety of antiretroviral activities to defend themselves against viral invaders and in return viruses have developed ingenious ways to circumvent these defences and, in some cases, actually hijack cellular proteins in order to facilitate their replication. Study of this cat and mouse interplay between viruses and their host cells throughout evolution has lead to the identification of some of the most sophisticated antiviral strategies that mammals have developed to prevent viral infection. Recently, a wave of publications has significantly enhanced our understanding of the relationship between human immunodeficiency virus type 1 (HIV-1) and its host, including: 1) the HIV-1 protein Vif and its interaction with host cell nucleic acid editing enzymes; 2) the host cell restrictive factors that provide protection against retroviral infection, such as TRIM5; and 3) the late domains of retroviruses and their relationship with the host cell vacuolar protein sorting pathway. The focus of this review is to provide an up-to-date account of these important areas of HIV-1 research and highlight how some of these new discoveries can potentially be exploited for the development of novel anti-retroviral therapeutics.